Open Journal Systems

Cover Image

Possible roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases.

Federica Titta, Martina Iannaccone, Nicola Gaetano Gatta, Gaetano Cammarota, Vittorio Gentile

Abstract


Transglutaminases (TGs) are ubiquitous enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is  the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted /crosslinked adducts) or –OH groups (to form ester linkages). In absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. Transglutaminase activity has  been  suggested to be involved in molecular mechanisms responsible for both  physiological or pathological processes. In particular, “tissue†TG (tTG, type 2), a member of the TG  enzyme family, has been recently shown to be involved in the molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD), one of the most common food intolerances described in the western population.  In addition, numerous scientific reports show that neurodegenerative diseases, such as Alzheimer’s Disease (AD),  Parkinson’s Disease (PD), supranuclear palsy, Huntington’s Disease (HD) and  other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This review focuses on the possible roles of the transglutaminase-catalyzed reactions as molecular mechanisms responsible for such diseases, describing also some pharmacological approaches made with transglutaminase inhibitors, in order to cure diseases characterized by aberrant  transglutaminase activity. 


Keywords


Transglutaminases; Post-translational modifications of proteins; Protein aggregation; Neurodegenerative diseases; Transglutaminase inhibitors; Cystamine.

Full Text:

PDF PDF Plus

References


Folk JE: Mechanism and basis for specificity of transglutaminase-catalyzed ï¥-(ï§-glutamyl)lysine bond formation. Adv Enzymol Relat Areas Mol Biol 1983, 54: 1-56.

http://dx.doi.org/10.1002/9780470122990.ch1

Lorand L, Conrad S M: Transglutaminases. Mol Cell Biochem 1984, 58: 9-35.

http://dx.doi.org/10.1007/BF00240602

PMid:6143256

Piacentini M, Martinet N, Beninati S, Folk J E: Free and protein conjugated-polyamines in mouse epidermal cells. Effect of high calcium and retinoic acid. J Biol Chem 1988, 263: 3790-3794 .

PMid:3346223

Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM: Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A 2004, 101: 4175-4179.

http://dx.doi.org/10.1073/pnas.0306885101

PMid:15020763 PMCid:PMC384714

Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM: Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 2004, 279: 17607-17616.

http://dx.doi.org/10.1074/jbc.M310198200

PMid:14747475

Song Y, Kirkpatrick LL, Schilling AB, Helseth DL, Chabot N, Keillor JW, Johnson GV, Brady ST: Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 2013, 78: 109-123.

http://dx.doi.org/10.1016/j.neuron.2013.01.036

PMid:23583110 PMCid:PMC3627183

Achyuthan KE, Greenberg CS: Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 1987, 262: 1901-1906.

PMid:2879844

Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y: A novel function of tissue-type transglutaminase: protein disulfide isomerase. Biochem J 2003, 373: 793-803.

http://dx.doi.org/10.1042/bj20021084

PMid:12737632 PMCid:PMC1223550

Lahav J, Karniel E, Bagoly Z, Sheptovitsky V, Dardik R, Inbal A: Coagulation factor XIII serves as protein disulfide isomerase. Thromb Haemost 2009, 101: 840-844.

http://dx.doi.org/10.1160/th08-09-0605

Ismaa SE, Mearns BM, Lorand L, Graham RM: Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009, 89: 991-1023.

http://dx.doi.org/10.1152/physrev.00044.2008

PMid:19584319

Smethurst PA, Griffin M. Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by calcium and nucleotides. Biochem J 1996, 313: 803-808.

http://dx.doi.org/10.1042/bj3130803

PMid:8611158 PMCid:PMC1216981

Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM: Gh: a GTP-binding protein with transglutaminase activity and receptor signalling function. Science 1994, 264 : 1593-1596.

http://dx.doi.org/10.1126/science.7911253

PMid:7911253

Gentile V, Porta R, Chiosi E, Spina A, Caputo I, Valente F, Pezone R, Davies PJA and Illiano G: Tissue transglutaminase and adenylate cyclase interactions in Balb-C 3T3 fibroblast membranes. Biochim Biophys Acta 1997, 1357: 115-122.

http://dx.doi.org/10.1016/S0167-4889(97)00024-4

Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM: Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 2001, 276: 20673-20678.

http://dx.doi.org/10.1074/jbc.M010846200

PMid:11274171

Mian S, El Alaoui S, Lawry J, Gentile V, Davies PJA, Griffin M: The importance of the GTP binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Letters 1995, 370: 27-31.

http://dx.doi.org/10.1016/0014-5793(95)00782-5

Olaisen B, Gedde-Dahl TJR, Teisberg P, Thorsby E, Siverts A, Jonassen R, Wilhelmy MC: A structural locus for coagulation factor XIIIA (F13A) is located distal to the HLA region on chromosome 6p in man. Am J Hum Genet 1985, 37: 215-220.

PMid:2858156 PMCid:PMC1684556

Yamanishi K, Inazawa J, Liew F-M, Nonomura K, Ariyama T, Yasuno H, Abe T, Doi H, Hirano J, Fukushima S: Structure of the gene for human transglutaminase 1. J Biol Chem 1992, 267: 17858-17863.

PMid:1381356

Gentile V, Davies PJA, Baldini A: The human tissue transglutaminase gene maps on chromosome 20q12 by in situ fluorescence hybridization. Genomics 1994, 20: 295-297.

http://dx.doi.org/10.1006/geno.1994.1170

PMid:7912692

Wang M, Kim IG, Steinert PM, McBride OW: Assignment of the human transglutaminase 2 (TGM2) and transglutaminase 3 (TGM3) genes to chromosome 20q11.2. Genomics 1994, 23: 721-722.

http://dx.doi.org/10.1006/geno.1994.1571

PMid:7851911

Gentile V, Grant F, Porta R, Baldini A: Human prostate transglutaminase is localized on chromosome 3p21.33-p22 by in situ fluorescence hybridization. Genomics 1995, 27: 219-220.

http://dx.doi.org/10.1006/geno.1995.1032

PMid:7665178

Grenard P, Bates MK, Aeschlimann D: Evolution of transglutaminase genes: identification of a transglutaminases gene cluster on human chromosome 15q. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 2001, 276: 33066-33078.

http://dx.doi.org/10.1074/jbc.M102553200

PMid:11390390

Thomas H, Beck K, Adamczyk M, Aeschlimann P, Langley M, Oita RC, Thiebach L, Hils M, Aeschlimann D: Transglutaminase 6: a protein associated with central nervous system development and motor function. Amino Acids 2013, 44: 161–177.

http://dx.doi.org/10.1007/s00726-011-1091-z

PMid:21984379 PMCid:PMC3535377

Bailey CDC, Johnson GVW: Developmental regulation of tissue transglutaminase in the mouse forebrain. J Neurochem 2004, 91: 1369-1379.

http://dx.doi.org/10.1111/j.1471-4159.2004.02825.x

PMid:15584913

Kim S-Y, Grant P, Lee JHC, Pant HC, Steinert PM: Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminase 1 and 2 in Alzheimer's disease. J Biol Chem 1999, 274: 30715-30721.

http://dx.doi.org/10.1074/jbc.274.43.30715

PMid:10521460

Citron BA, Santa Cruz KS, Davies PJ, Festoff BW: Intron-exon swapping of transglutaminase mRNA and neuronal tau aggregation in Alzheimer's disease. J Biol Chem 2001, 276: 3295–3301.

http://dx.doi.org/10.1074/jbc.M004776200

PMid:11013236

De Laurenzi V, Melino G: Gene disruption of tissue transglutaminase. Mol Cell Biol 2001, 21: 148-155.

http://dx.doi.org/10.1128/MCB.21.1.148-155.2001

PMid:11113189 PMCid:PMC88788

Mastroberardino PG, Iannicola C, Nardacci R, Bernassola F, De Laurenzi V, Melino G, Moreno S, Pavone F, Oliverio S, Fesus L, Piacentini M: 'Tissue' transglutaminase ablation reduces neuronal death and prolongs survival in a mouse model of Huntington's disease. Cell Death and Differentiation 2002, 9: 873-880.

http://dx.doi.org/10.1038/sj.cdd.4401093

PMid:12181738

Lorand L, Graham RM: Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Mol Cell Biol 2003, 4: 140-156.

http://dx.doi.org/10.1038/nrm1014

PMid:12563291

Wolf J, Jäger C, Lachmann I, Schönknecht P, Morawski M, Arendt T, Mothes T: Tissue transglutaminase is not a biochemical marker for Alzheimer's disease. Neurobiol Aging 2013, 34: 2495-2498.

http://dx.doi.org/10.1016/j.neurobiolaging.2013.05.008

PMid:23747046

Wilhelmus M.M.M., Benjamin Drukarch B: Tissue transglutaminase is a biochemical marker for Alzheimer's disease. Neurobiol Aging 2014, 35: e3-e4.

http://dx.doi.org/10.1016/j.neurobiolaging.2013.08.022

PMid:24080177

Wolf J, Jäger C, Morawski M, Lachmann I, Schönknecht P, Mothes T, Arendt T: Tissue transglutaminase in Alzheimer's disease - facts and fiction: a reply to "Tissue transglutaminase is a biochemical marker for Alzheimer's disease". Neurobiol Aging 2014, 35: e5-e9.

http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.042

PMid:24300236

Adams RD, Victor M: Principles of Neurology. McGraw-Hill, Inc. Ed. 1993.

Selkoe DJ, Abraham C, Ihara Y: Alzheimer's disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Proc Natl Acad Sci U S A 1982, 79: 6070-6074.

http://dx.doi.org/10.1073/pnas.79.19.6070

PMid:6136967 PMCid:PMC347054

Grierson AJ, Johnson GV, Miller CC: Three different human Ï„ isoforms and rat neurofilament light, middle and heavy chain proteins are cellular substrates for transglutaminase. Neurosci Lett 2001, 298: 9-12.

http://dx.doi.org/10.1016/S0304-3940(00)01714-6

Singer SM, Zainelli GM, Norlund MA, Lee JM, Muma NA: Transglutaminase bonds in neurofibrillary tangles and paired helical filament Ï„ early in Alzheimer's disease. Neurochem Int 2002, 40: 17-30.

http://dx.doi.org/10.1016/S0197-0186(01)00061-4

Halverson RA, Lewis J, Frausto S, Hutton M, Muma NA: Tau protein is cross-linked by transglutaminase in P301L tau transgenic mice. J Neurosci 2005, 25(5): 1226-33.

http://dx.doi.org/10.1523/JNEUROSCI.3263-04.2005

PMid:15689560

Jeitner TM, Matson WR, Folk JE, Blass JP, Cooper AJL: Increased levels of γ-glutamylamines in Huntington disease CSF. J Neurochem 2008, 106: 37-44.

http://dx.doi.org/10.1111/j.1471-4159.2008.05350.x

PMid:18422943 PMCid:PMC2574808

Dudek SM, Johnson GV, Transglutaminase facilitates the formationof polymers of the beta-amyloid peptide. Brain Res 1994, 651(1-2):129-33.

http://dx.doi.org/10.1016/0006-8993(94)90688-2

Hartley DM, Zhao C, Speier AC, Woodard GA, Li S, Li Z, Walz T: Transglutaminase induces protofibril-like amyloid β-protein assemblies that are protease-resistant and inhibit long-term potentiation. J Biol Chem 2008, 283: 16790-16800.

http://dx.doi.org/10.1074/jbc.M802215200

PMid:18397883 PMCid:PMC2423271

Citron BA, Suo Z, SantaCruz K, Davies PJ, Qin F, Festoff BW: Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochem Int 2002, 40: 69-78.

http://dx.doi.org/10.1016/S0197-0186(01)00062-6

Junn E, Ronchetti RD, Quezado MM, Kim SY, Mouradian MM: Tissue transglutaminase-induced aggregation of α-synuclein: Implications for Lewy body formation in Parkinson's disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 2003, 100: 2047-2052.

http://dx.doi.org/10.1073/pnas.0438021100

PMid:12576551 PMCid:PMC149956

Zemaitaitis MO, Lee JM, Troncoso JC, Muma NA: Transglutaminase-induced cross-linking of Ï„ proteins in progressive supranuclear palsy. J Neuropathol Exp Neurol 2000, 59: 983-989.

http://dx.doi.org/10.1093/jnen/59.11.983

PMid:11089576

Zemaitaitis MO, Kim SY, Halverson RA, Troncoso JC, Lee JM, Muma NA: Transglutaminase activity, protein, and mRNA expression are increased in progressive supranuclear palsy. J Neuropathol Exp Neurol 2003, 62: 173-184.

http://dx.doi.org/10.1093/jnen/62.2.173

PMid:12578227

Iuchi S, Hoffner G, Verbeke P, Djian P, Green H: Oligomeric and polymeric aggregates formed by proteins containing expanded polyglutamine. Proc Natl Acad Sci U S A 2003, 100: 2409-2414.

http://dx.doi.org/10.1073/pnas.0437660100

PMid:12591956 PMCid:PMC151354

Gentile V, Sepe C, Calvani M, Melone MAB, Cotrufo R, Cooper AJL, Blass JP, Peluso G: Tissue transglutaminase-catalyzed formation of high-molecular-weight aggregates in vitro is favored with long polyglutamine domains: a possible mechanism contributing to CAG-triplet diseases. Arch Biochem Biophys 1998, 352: 314-321.

http://dx.doi.org/10.1006/abbi.1998.0592

PMid:9587422

Kahlem P, Green H, Djian P: Transglutaminase action imitates Huntington's disease: selective polymerization of huntingtin containing expanded polyglutamine. Mol Cell 1998, 1: 595-601.

http://dx.doi.org/10.1016/S1097-2765(00)80059-3

Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, Steinman L: Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington's disease brain nuclei. Proc Natl Acad Sci U S A 1999, 96: 7388-7393.

http://dx.doi.org/10.1073/pnas.96.13.7388

PMid:10377424 PMCid:PMC22095

Segers-Nolten IM, Wilhelmus MM, Veldhuis G, van Rooijen BD, Drukarch B, Subramaniam V: Tissue transglutaminase modulates α-synuclein oligomerization. Protein Sci 2008, 17: 1395-1402.

http://dx.doi.org/10.1110/ps.036103.108

PMid:18505736 PMCid:PMC2492824

Lai T-S, Tucker T, Burke JR, Strittmatter WJ, Greenberg CS: Effect of tissue transglutaminase on the solubility of proteins containing expanded polyglutamine repeats. J Neurochem 2004, 88: 1253-1260.

http://dx.doi.org/10.1046/j.1471-4159.2003.02249.x

PMid:15009681

Konno T, Mori T, Shimizu H, Oiki S, Ikura K: Paradoxical inhibition of protein aggregation and precipitation by transglutaminase-catalyzed intermolecular cross-linking. J Biol Chem 2005, 280: 17520-17525.

http://dx.doi.org/10.1074/jbc.M413988200

Paid:15731111

The Huntington's Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosome. Cell 1993, 72: 971-983.

http://dx.doi.org/10.1016/0092-8674(93)90585-E

Banfi S, Chung MY, Kwiatkowski TJ Jr, Ranum LP, McCall AE, Chinault AC, Orr HT, Zoghbi HY: Mapping and cloning of the critical region for the spinocerebellar ataxia type 1 gene (SCA1) in a yeast artificial chromosome contig spanning 1.2 Mb. Genomics 1993, 18: 627-635.

http://dx.doi.org/10.1016/S0888-7543(05)80365-9

Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S: Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996, 14: 277-284.

http://dx.doi.org/10.1038/ng1196-277

PMid:8896556

Pujana MA, Volpini V, Estivill X: Large CAG/CTG repeat templates produced by PCR, usefulness for the DIRECT method of cloning genes with CAG/CTG repeat expansions. Nucleic Acids Res 1998, 1: 1352-1353.

http://dx.doi.org/10.1093/nar/26.5.1352

Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JDJr, Hawkes R, Frankel WN, Copeland NG, Jenkins N: Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 1996, 87: 607-617.

http://dx.doi.org/10.1016/S0092-8674(00)81381-1

Vincent JB, Neves-Pereira ML, Paterson AD, Yamamoto E, Parikh SV, Macciardi F, Gurling HM, Potkin SG, Pato CN, Macedo A, Kovacs M, Davies M, Lieberman JA, Meltzer HY, Petronis A, Kennedy JL: An unstable trinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet 2000, 66: 819-829.

http://dx.doi.org/10.1086/302803

PMid:10712198 PMCid:PMC1288165

Holmes SE, O'Hearn E, Margolis RL: Why is SCA12 different from other SCAs? Cytogenet Genome Res 2003, 100: 189-197.

http://dx.doi.org/10.1159/000072854

PMid:14526180

Imbert G, Trottier Y, Beckmann J, Mandel JL: The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics 1994, 21: 667-668.

http://dx.doi.org/10.1006/geno.1994.1335

PMid:7959752

La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH: Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991, 352: 77-79.

http://dx.doi.org/10.1038/352077a0

PMid:2062380

Onodera O, Oyake M, Takano H, Ikeuchi T, Igarashi S, Tsuji S: Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am J Hum Genet 1995, 57: 1050-1060.

PMid:7485154 PMCid:PMC1801383

Cooper AJL, Sheu K-FR, Burke JR, Strittmatter WJ, Gentile V, Peluso G, Blass JP: Pathogenesis of inclusion bodies in (CAG)n/Qn-expansion diseases with special reference to the role of tissue transglutaminase and to selective vulnerability. J Neurochem 1999, 72: 889-899.

http://dx.doi.org/10.1046/j.1471-4159.1999.0720889.x

PMid:10037459

Hadjivassiliou M, Maki M, Sanders DS, Williamson CA, Grunewald RA, Woodroofe NM, Korponay-Szabó IR: Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology 2006, 66: 373-377.

http://dx.doi.org/10.1212/01.wnl.0000196480.55601.3a

PMid:16476935

Boscolo S, Lorenzon A, Sblattero D, Florian F, Stebel M, Marzari R, Not T, Aeschlimann D, Ventura A, Hadjivassiliou M, Tongiorgi E: Anti transglutaminase antibodies cause ataxia in mice. PLoS One 2010 Mar 15, 5 (3): e9698.

http://dx.doi.org/10.1371/journal.pone.0009698

PMid:20300628 PMCid:PMC2837746

Stamnaes J, Dorum S, Fleckenstein B, Aeschlimann D, Sollid LM: Gluten T cell epitope targeting by TG3 and TG6; implications for dermatitis herpetiformis and gluten ataxia. Amino Acids 2010, 39: 1183-1191.

http://dx.doi.org/10.1007/s00726-010-0554-y

PMid:20300788

Basso M, Berlin J, Xia L, Sleiman SF, Ko B, Haskew-Layton R, Kim E, Antonyak MA, Cerione RA, Iismaa SE, Willis D, Cho S, Ratan RR: Transglutaminase inhibition protects against oxidative stress-induced neuronal death downstream of pathological ERK activation. Journal of Neurosciences 2012, 39: 6561-6569.

http://dx.doi.org/10.1523/JNEUROSCI.3353-11.2012

PMid:22573678 PMCid:PMC3444816

Ientile R, Currò M, Caccamo D: Transglutaminase 2 and neuroinflammation. Amino Acids 2015, 47: 19-26.

http://dx.doi.org/10.1007/s00726-014-1864-2

PMid:25398223

Griffith OW, Larsson A, Meister A: Inhibition of γ-glutamylcysteine synthetase by cystamine: an approach to a therapy of 5-oxoprolinuria (pyroglutamic aciduria). Biochem Biophys Res Commun 1977, 79: 919-925.

http://dx.doi.org/10.1016/0006-291X(77)91198-6

Igarashi S, Koide R, Shimohata T, Yamada M, Hayashi Y, Takano H, Date H, Oyake M, Sato T, Sato A, Egawa S, Ikeuchi T, Tanaka H, Nakano R, Tanaka K, Hozumi I, Inuzuka T, Takahashi H, Tsuji S: Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 1998, 18: 111-117.

http://dx.doi.org/10.1038/ng0298-111

PMid:9462738

Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, Mitchell D, Steinman L. Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nature Medicine 2002, 8: 143-149.

http://dx.doi.org/10.1038/nm0202-143

PMid:11821898

Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJ, Ratan RR, Beal MF, Hersch SM, Ferrante RJ: Therapeutic effects of cystamine in a murine model of Huntington's disease. J Neurosci 2002, 22: 8942-8950.

PMid:12388601

Lesort M, Lee M, Tucholski J, Johnson GVW: Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 2003, 278: 3825-3830.

http://dx.doi.org/10.1074/jbc.M205812200

PMid:12458211

Dubinsky R, Gray C: CYTE-I-HD: Phase I Dose Finding and Tolerability Study of Cysteamine (Cystagon) in Huntington's Disease. Movement Disorders 2006, 21: 530–533.

http://dx.doi.org/10.1002/mds.20756

PMid:16258942

Langman CB, Greenbaum LA, Sarwal M, Grimm P, Niaudet P, Deschênes G, Cornelissen E, Morin D, Cochat P, Matossian D, Gaillard S, Bagger MJ, Rioux P: A randomized controlled crossover trial with delayed-release cysteamine bitartrate in nephropathic cystinosis: effectiveness on white blood cell cystine levels and comparison of safety. Clin J Am Soc Nephrol. 2012, 7: 1112-20.

http://dx.doi.org/10.2215/CJN.12321211

PMid:22554716 PMCid:PMC3386675

Besouw M, Masereeuw R, van den Heuvel L, Levtchenko E: Cysteamine: an old drug with new potential. Drug Discovery Today 2013, 18: 785-792.

http://dx.doi.org/10.1016/j.drudis.2013.02.003

PMid:23416144

Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D. Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 2008, 64: 332-343.

http://dx.doi.org/10.1002/ana.21450

PMid:18825674

Krasnikov BF, Kim SY, McConoughey SJ, Ryu H, Xu H, Stavrovskaya I, Iismaa SE, Mearns BM, Ratan RR, Blass JP, Gibson GE, Cooper AJ. Transglutaminase activity is present in highly purified nonsynaptosomal mouse brain and liver mitochondria. Biochemistry 2005, 44: 7830-7843.

http://dx.doi.org/10.1021/bi0500877

PMid:15909997 PMCid:PMC2597021

Menalled LB, Kudwa AE, Oakeshott S, Farrar A, Paterson N, Filippov I, Miller S, Kwan M, Olsen M, Beltran J, Torello J, Fitzpatrick J, Mushlin R, Cox K, McConnell K, Mazzella M, He D, Osborne GF, Al-Nackkash R, Bates GP, Tuunanen P, Lehtimaki K, Brunner D, Ghavami A, Ramboz S, Park L, Macdonald D, Munoz-Sanjuan I, Howland D: Genetic deletion of transglutaminase 2 does not rescue the phenotypic deficits observed in R6/2 and zQ175 mouse models of Huntington's disease. PLoS One 2014, Jun 23; 9(6):e99520. doi: 10.1371/journal.pone.0099520. eCollection 2014.

http://dx.doi.org/10.1371/journal.pone.0099520

Davies JE, Rose c, Sarkar S, Rubinsztein DC: Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy. Science Translational Medicine 2010, 2: 34-40.

http://dx.doi.org/10.1126/scitranslmed.3000723

PMid:20519718

Pietsch M, Wodtke R, Pietzsch J, Löser R: Tissue transglutaminase: An emerging target for therapy and imaging. Bioorganic & Medicinal Chemistry Letters 2013, 23: 6528–6543.

http://dx.doi.org/10.1016/j.bmcl.2013.09.060

PMid:24432384

Bhatt MP, Lim YC, Hwang J, Na S, Kim YM, Ha KS: C-peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species-mediated transglutaminase 2 activation. Diabetes. 2013, 62: 243-253.

http://dx.doi.org/10.2337/db12-0293

PMid:22923476 PMCid:PMC3526059




DOI: http://dx.doi.org/10.14259%2Ftcb.v4i1.184

Refbacks

  • There are currently no refbacks.